

Electrolytes and Interfaces for Stable High-Energy Na-Ion Batteries

Huilin Pan (PI) Ji-Guang Zhang

Vehicle Technologies Annual Merit Review

June 12th, 2019

Project ID #bat429

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Overview

Timeline

Start date: Oct. 1, 2018

End date: Sept. 30, 2021

Percent complete: 17%

Budget

- Project funding
 - DOE share \$400K
- Funding for FY19: \$400K

Barriers

- Cost: Need low cost and sustainable anode and cathode material (Co-free) to enable electric vehicle (EV) battery cost < \$100/kWh.</p>
- Life: Need functional electrolyte enabling stable electrolyte / electrolyte interface for long cycle life.

Partners

- Argonne National Laboratory
- Lawrence Berkeley National Laboratory

Relevance/Objectives

Impact

Design and understanding of electrolytes and electrolyte/electrode interface in Na-ion battery (NIB) systems is critical for the development of NIB technology as an alternative EV battery solution with lower cost.

Objective

- Develop innovative electrolytes and fundamental understanding on the interface between electrode and electrolyte for stable operation of high energy NIB for EV.
 - Improve achievable capacities of NIB electrode materials.
 - Stabilize long cycle life and safe high energy NIBs.
 - Build correlation (electrolyte design rule) between electrochemical performance of Na batteries with the electrolyte/interface properties.

Milestones

Date	Milestones Name/Description	Status
Dec. 31, 2018	Determine the physical-chemical properties of carbonate-based electrolytes and identify the key factor affecting the stability of these electrolytes in Na batteries.	Completed
March 31, 2019	Design new phosphate-based electrolyte with improved electrochemical and thermal stability in Na batteries.	Completed
June 30, 2019	Characterize chemical coordination structure of selected carbonate- and phosphate-based electrolytes for Na batteries.	On track
Sept. 30, 2019	Demonstrate improved capacity, CE and cyclic stability of electrode materials using the electrolytes developed in this work; achieve hard carbon capacity of >250 mAh g ⁻¹ , ICE >85%, cycle life>200 time.	On track

Approach

- Identify of the solvent and salt effects for carbonate-based electrolytes to enhance the capacity utilization and coulombic efficiency (CE) of electrode materials for Na batteries.
- Develop new functional nonflammable phosphate-based electrolyte with improved performance of Na batteries.
- Use hard carbon (HC) anode and layered transition metal oxide cathode for electrolyte evaluation.

Conductivity measurement

- Solvent Effect → Conductivity sequence: EC+DMC >PC+DMC > EC+PC > PC > DMC
- Salt Effect → Conductivity sequence: NaFSI ~ NaPF₆ > NaTFSI > NaTf

Technical Accomplishments Solvent effect

1 M NaPF₆ in Different Solvents

- Solvent has a significant effect on capacity and rate performance of HC anode.
- Co-solvent approach is required to balance CE and rate performance of HC, in which EC is needed for SEI formation with higher coulombic efficiency.
- ► 1M NaPF₆ / EC+DMC exhibits best overall performance.

Technical Accomplishments Salt effect

Different Salt in EC +DMC co-solvent

- For CE: NaFSI > NaTFSI > NaPF₆ > NaTf
- For capacity: NaPF₆ > NaTf > NaFSI > NaTFSI
- For Rate: NaPF₆ > NaTf > NaFSI> NaTFSI

Three-electrode electrochemical impedance measurement

- 1 M NaPF₆ / EC+DMC exhibits lowest impedance on both hard carbon and Na metal anode.
- ► EC is important to form stable SEI layer on both HC and Na metal.

Functional phosphate-based electrolyte

- ✓ High oxidization window
- ✓ High thermal stability
- ✓ Nonflammable

Molar Ratio: 1) TEP: NaFSI (n=1, 2, 4, 8)

2) TMP: NaFSI (n=1, 2,4, 8)

3) TEP: NaFSI: TTE

4) TEP: NaFSI: BTFE

Nonflammable phosphate-based electrolytes show an ionic conductivity ~4 mS cm⁻¹ at RT.

Functional phosphate-based electrolyte – cathode stability test

High compatibility with Na Cathode

 TEP-based electrolyte is more compatible with cathode than conventional carbonate electrolyte, with greatly improved coulombic efficiency and available capacity.

Functional phosphate-based electrolyte – anode stability test

- ► NallHC cells needs long time to activate the capacity from low discharge plateau of HC in the phosphate-based TEP:NaFSI (2:1) electrolyte.
- Pre-formation process may need to be used to condition anode.

- Completed the carbonate-based electrolyte composition (salt, solvent) optimization for hard carbon anode.
- Designed new functional phosphate-based electrolytes for NIB cathode with high compatibility.
- ▶ Designed *in-situ* three-electrode EIS measurement to identify the electrode process at cathode/anode interface individually.

Collaboration and Coordination

- ▶ Dr. Chongmin Wang (PNNL) for TEM and STEM images etc.
- Dr. Mark Engelhard (PNNL) for XPS analysis.
- Prof. Yong-Sheng Hu (Institute of Physics, Chinese Academy of Sciences) for providing Na ion cathode material electrodes.

Remaining Challenges and Future Work

Key Challenges

- The poor wetting problems of sodium ion electrolyte with convectional PP/PE separator.
- The compatibility of electrolyte for cathode and anode.

 Availability of benchmark cathode materials & electrodes for sodium ion batteries electrolyte evaluation.

Future Work

- Characterize chemical coordination structure of selected carbonate- and phosphate-based electrolytes for Na batteries.
- Optimize electrolyte additives to tailor the solvation clusters in electrolyte to improve their electrochemical performance and wettability on separator.
- Use full cell configuration to evaluate the optimized electrolyte.

Any proposed future work is subject to change based on funding levels.

Summary

- The screening of electrolyte component (salt, solvent) has been completed for NIBs. EC is critical to both hard carbon anode and Na metal to form stable SEI in carbonate-based electrolytes for NIBs.
- Nonflammable phosphate-based electrolytes show high compatibility with layered O3-NaCu_{1/9}Ni _{2/9}Fe_{1/3}Mn_{1/3}O₂ cathode material with the first cycle CE improved from 77% to 98%.
- Next step will focus on understanding molecular solvation structures and SEI formation on HC and NaCu_{1/9}Ni _{2/9}Fe_{1/3}Mn_{1/3}O₂ cathode to further improve the electrochemical behavior to NIBs full cell.

Acknowledgement

- Support form DOE/VTO/BMR program is greatly appreciated.
- Team member:

Phung M Le, Thanh D Vo, Yan Jin, Noha Sabi, Ji-Guang Zhang

Technical Backup Slides

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Na metal stability Test

Store Na metal in solution for 7 days

 Electrolyte is more easy to react with Na metal than solvent itself.

Solution	Chemical stability with Na metal
EC	V V V
PC	V V V
DMC	V V V
EMC	×
DEC	××
0.5 M NaFSI + EC	V V
0.5 M NaFSI + PC	V V
0.5 M NaFSI + DMC	V V
0.5 M NaFSI + EMC	××
0.5M NaFSI + DEC	×××

VTF Equation of ionic conductivity

Carbonate-based Electrolyte

Electrolyte	E _a (J. mol ⁻¹)
PC + 1M NaFSI	2681
DMC + 1M NaFSI	2070
EC-PC + 1M NaFSI	2194
EC-DMC + 1M NaFSI	1994
PC-DMC + 1M NaFSI	2220
PC + 1M NaPF ₆	2754
DMC + 1M NaPF ₆	1637
EC-PC + 1M NaPF ₆	2245
EC-DMC + 1M NaPF ₆	1924
PC-DMC + 1M NaPF ₆	2143

Phosphate-based Electrolyte

Electrolyte	E _a (J. mol ⁻¹)
TEP:NaFSI = 2:1	2507
TMP:NaFSI = 2:1	4196
TEP:NaTFSI:TTE= 2:1:1	2357
TEP:NaTFSI:TTE = 2:1:2	2698
TEP:NaTFSI:TTE = 2:1:0.5	3169
TEP:NaTFSI:BTFE= 2:1:1	1944
TEP:NaTFSI:BTFE = 2:1:2	1695

Note: The activation energy of electrolytes was fitting using VTF function for the ionic conductivity measurement results in page 6 and 10.

Critical Assumptions and Issues

- Na-ion battery technology will be a competitive alternative choice for electric vehicles.
 - The crustal abundance of sodium is far greater than that of lithium; Sodium supply is sustainable with low cost.
- State-of-the-art anode material for Na-ion batteries
 - Hard carbon could be the #1 choice for state-of-the-art anode at the current stage due to safety, cost and reliability advantages.
 - This project uses hard carbon as the anode to evaluate the electrolyte.
- State-of-the-art cathode for Na-ion batteries
 - Co-free cathode with earth abundant element such as Fe, Mn, could further reduce the cost of battery cost.